E-Discovery: Mobile Forensic Reports

By Sean Broderick and John C. Ellis, Jr.

[Editor’s Note: Sean Broderick is the National Litigation Support Administrator.  He provides guidance and recommendations to federal courts, federal defender organization staff, and court appointed attorneys on electronic discovery and complex cases, particularly in the areas of evidence organization, document management and trial presentation. Sean is also the co-chair of the Joint Working Group on Electronic Technology in the Criminal Justice System (JETWG), a joint Department of Justice and Administrative Office of the U.S. Courts national working group which examines the use of electronic technology in the federal criminal justice system and suggested practices for the efficient and cost-effective management of post-indictment electronic discovery. 

John C. Ellis, Jr. is a National Coordinating Discovery Attorney for the Administrative Office of the U.S. Courts, Defender Services Office. In this capacity, he provides litigation support and e-discovery assistance on complex criminal cases to defense teams around the country. Before entering private practice, Mr. Ellis spent 13 years as a trial attorney and supervisory attorney with Federal Defenders of San Diego, Inc. He also serves as a digital forensic consultant and expert.]

Most federal criminal cases involve discovery that originally came from a cell phone. CJA panel attorneys and Federal Defenders have now become accustomed to receiving “reports” generated from Cellebrite.[1] In this blog post, we will talk about the valuable information that may be contained in those Cellebrite generated reports and what form of production you can get the reports in. Spoiler alert: we suggest you request that you receive those reports in Cellebrite Reader format and not just default to the PDF format that you know and love.

We are going to cover:

  1. the basic concepts behind the forensic process that law enforcement uses when using Cellebrite UFED to extract information from a phone,
  2. what is a Cellebrite generated mobile forensic report (which Cellebrite calls extraction reports), and
  3. the pros and cons for the potential formats you can receive Cellebrite generated reports in.

Though there are a number of forensic tools that law enforcement may use to extract data from a phone, the most common is Cellebrite. We are going to discuss Cellebrite, but know there are others (e.g. Oxygen, Paraben, etc.). Many of the processes and principles that apply to Cellebrite will apply to other tools.

Basic concepts behind the forensic process

How does a digital forensic examiner get the data from the mobile phone? Extracting data from mobile devices (a.k.a. acquisition) is complex and requires a great amount of skill when done correctly. For purposes of this blog post, we are only going to focus on one concept, which is the type of extraction that was performed. In order to retrieve data from a mobile phone, an examiner attaches the mobile phone to a computer which has the Cellebrite UFED software, follows a series of protocols, and saves a portion of the data on an external storage device. In most cases, examiners will not retrieve all data that was on the mobile phone at the time of the extraction—this is based in part on the phone’s memory architecture. Moreover, the type of extraction that is performed on the device can limit the amount of data that is retrieved.

The following are the most common types of extractions for Android devices: (1) Logical (or Advanced Logical); (2) File System; and (3) Physical. As for Apple, the most common types are Logical (Partial) and Advanced Logical. Generally, physical extractions retrieve the most data. After the iPhone 4, physical extractions are currently no longer available with Cellebrite with an iPhone device.

After a digital forensic examiner does an extraction of a phone (for this example, we will assume that the extraction was done through the Cellebrite UFED4PC), it generates an extraction files/folders, along with a .UFD (text) file that tells Cellebrite Physical Analyzer basic information about the extraction (such as which UFED was used, start and finish time, and hash information). The extraction files can be produced in a number of formats (.zip and .bin are common examples) depending on the type of extraction done. The takeaway here is that the type of extraction impacts the type and volume of data that was retrieved during the extraction process.

What is a Cellebrite generated report?

After extracting the data, the examiner uses Cellebrite Physical Analyzer to review the data retrieved from the mobile phone. The examiner also has the option of generating a report, which allows users without specialized forensic software to view the data retrieved from the mobile phone. As discussed below, the “extraction report” may be produced in multiple formats. Of note, the examiner can apply filters to decide what data types to export (e.g. emails, images, instant messages, searched items, etc.), and can further filter the data by date range. These reports are limited to the data extracted from the original device; the parameters of the forensic program dictated by the forensic examiner. The takeaway here is that a report does not necessarily include all data that was retrieved during the extraction.

Option for the Cellebrite generated report (extraction report)

Cellebrite generated reports, like the extractions described above, contain information from the mobile phone. This may include text messages, emails, call logs, web browsing history, location data, etc. They can be produced in a number of formats, though the most common are .PDF, .HTML, and .UFDR. There are pros and cons for each format of report.

PDF

Report in PDF format

There are several pros to receiving a Cellebrite generated report in PDF. CJA panel attorneys and Federal Defender defense teams are used to working PDFs. It is easy to add Bates stamps to them. They work on Macs. And they can be annotated and highlighted.

But there are also several important cons that make PDF a less desirable file type for Cellebrite generated reports. For instance, because phones have the capacity to contain large volumes of data, the reports generated from extractions can be quite large. A Cellebrite generated PDF report can easily reach 10,000 pages, which can cause a computer to slow down or even crash. Moreover, users cannot sort or filter data, hide data fields, or search within search results. In short, although PDFs are a convenient file type, it is not the most useful or efficient format for reviewing these types of reports.

HTML

Report in HTML format

There are several pros to receiving a Cellebrite generated report in the HTML format. The files load fast and can be viewed in any browser (such as Chrome, Firefox or Safari). In this format, each data type, such as SMS Messages, are hyperlinked and open in a new browser. (Please note that the hyperlinks only work if the file and the data are provided with the HTML file which can easily get overlooked when people move data.) Moreover, it is easy to search within HTML files and they operate on Macs.

But like PDFs, HTML files have several notable cons. First, you cannot sort or filter the data. Nor can you hide data fields. And you cannot easily generate reports for other subsets of information. Although HTML files are easy to use, they have significant limitations when it comes to reviewing reports.

UFDR

Report in UFDR format

The best format for receiving Cellebrite generated reports is the Cellebrite Reader format. The Cellebrite Reader format allows a user to create reports containing all data, or a portion thereof, in multiple formats including PDF, HTML and UFDR. So, if you receive if in UFDR format you can easily convert it to PDF or HTML later on (which is not possible if you receive it in HTML or PDF). Additionally, in this file format, users can sort and filter data, can search within results, can move or reorder data within columns, and can create tags—which is a convenient way to organize large volumes of discovery. And a user can open multiple UFDR files at the time and search across them. This allows a user to, amongst other things, search for keywords across multiple devices simultaneously.

The one downside to UFDR files is that they will not work on a Mac. You also need to have the free Cellebrite Reader program to open and use the UFDR file. Overall, this is the format you should request when speaking to the government about what form you would like reports generated from Cellebrite produced in.

Final note about formats: When deciding about your preferred format to review a Cellebrite generated report, remember that it is easy for an examiner to select all three formats at the same time. Often, an examiner will provide all three to make it easier for people to review the data in the way they want.

Conclusion

Mobile forensic reports are a ubiquitous part of discovery. When reviewing them, it is important to remember that the information in the report is limited by the limitations of retrieving data from mobile devices, the type of extraction performed on the device, and the data the examiner decided to include in the report. And the form of production of the report can affect how you review the data. Attorneys should consider contacting an expert or consultant if they have questions about the contents of a report.

Of note, Troy Schnack, Computer System Administrator for Federal Public Defender Office in Kansas City, Missouri, will be doing a webinar on mobile devices and will go into detail regarding Cellebrite Reader on Tuesday, September 22, 2020. Please register for the program on fd.org – we highly recommend it.


[1] Cellebrite UFED is a mobile forensic software program that allows trained users to extract and analyze phone call history, contact information, audio, photos, and videos and texts from mobile phones or forensic images of mobile devices produced as part of discovery. It has wide coverage for accessing digital devices from Android to Apple, with more than 31,000 device profiles of the most common phones. Cellebrite UFED can come as software only or can include a physical unit with accessories such as tip and cable set to connect to various mobile devices.